
N O N S T A T I O N A R Y  C O N D U C T I N G  F R E E  

IN A T R A N S V E R S E  M A G N E T I C  F I E L D  

A .  I .  B e r t i n o v  a n d  D. A.  B u t  

F L O W  

In magne tohydrodynamic  flow the v i scous  f r i c t ion  at the wal l s  can be subs tan t ia l .  The ro le  
of v i scous  f r ic t ion  can be cons i4e rab ly  reduced  by using a f r ee  or  a s e m i r e s t r i c t e d  flow of 
the conducting fluid. Nons ta t ionary  phenomena in one -d imens iona l  motion of a f ree  plane 
i n c o m p r e s s i b l e  fluid flow in a t r a n s v e r s e  magnet ic  f ie ld  a r e  examined.  The na r row  s ides  
of the flow come into contact  with the sec t iona l  e l e c t r ode s  connected through ex te rna l  c i r -  
cui ts  with an ac t ive - induc t ive  load.  The magnet ic  Reynolds number  and the magnetody-  
dynamic in t e rac t ion  p a r a m e t e r  a r e  a s s u m e d  to be l a rge .  When the e l e c t r i c  f ie ld  due to 
e l e c t romagne t i c  induction in the channel is  much s m a l l e r  than the f ie ld  due to the ex te rna l  
c i r c u i t s ,  the p r o b l e m  can be r educed  to the c h a r a c t e r i s t i c  Cauchy p r ob l e m  for  a q u a s i l i n e a r  
hyperbo l i c  s y s t e m  of f i r s t - o r d e r  equat ions which can be solved by the method of c h a r a c t e r -  
i s t i c s  using a compute r .  

1. Fo rmula t ion  of the P r o b l e m .  Let us examine  a f r ee  plane flow of a nonviscous  i n c o m p r e s s i b l e  
conducting f luid moving in a t r a n s v e r s e  magnet ic  f ie ld  B (0, By, 0) at a veloci ty  u (Ux, 0, 0) and with the 
na r row s ides  in contact  with the e l e c t r o d e s  in the p lanes  z = * ~2z0; in Fig.  1, the f r ee  flow is  shown by 
the b roken  l ines  between the e l e c t r o d e s .  The e l e c t r ode s  a re  sec t ioned  along the x axis,  and each e l ec t rode  
p a i r  i s  connected to an independent ex te rna l  c i r cu i t  p laced  on the downs t ream side  and cons i s t ing  of an 
ohmic r e s i s t a n c e  Re and an inductance L e. In the region  y > 1/2y 0, y < - 1/2y0, the re  is  an idea l  magnet ic  c i r -  
cuit  (t~ =~)  c losed  between the p lanes  x= 0 and x= l .  The flow moves  in the na r row gap Y0 between the f e r r o -  
magnet ic  wal l s  without touching them. If the ex te rna l  c i r cu i t s  a r e  c losed,  an e l e c t r i c  c u r r e n t  with a densi ty  
j (0, 0, j) appea r s  in the s t r e a m  and magnetohydrodynamic  in te rac t ion  takes  p lace .  

It i s  a s s u m e d  that  at the input of the channel the flow has longitudinal  nonconducting wal l s  and at the 
output of the channel,  for  ins tance,  the flow begins  to b r e a k  up so that the edge effects  can be neglec ted .  The 
d i s t r ibu t ion  of the ex te rna l  r e s i s t a n c e s  and inductances  and a lso  the ex te rna l  magnet ic  f ie ld  B e a r e  con- 
s i d e r e d  as  independent smooth functions at x > 0, t > 0: Re=Re(x ,  t), Le= Le(X), Be= Be(t), Re{0 , t ) ~  o~ (at 
the input the e l e c t r o d e s  a re  open). 
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The functions Re and L e a re  such that the e lectr ic  field produced by the external c i rcui ts  is much 
l a rge r  than the field produced by the change in the internal flow interaction in the channel for the circuit  
of each electrode pair .  The gravitat ional  and bulk dynamic forces  act only along the x axis and are  cha r -  
ac ter ized  by the acce lera t ion  qx(t). The significance of these res t r ic t ions  will be obvious from the follow- 
ing. The functions Re(x, t), Le(x), Be(t) a re  given and are  the controlling pa rame te r s  for the system. If 
necessa ry ,  the conductivity of the fluid r as a function of x and t can be included. However, in this case, 
~= const. The magnetic Reynolds number  R m and the pa ramete r  of the magnetohydrodynamic interaction 
for the flow are assumed to be considerable.  

For  t < 0 let the flow be steady, and at the instant t = 0 let the controll ing pa rame te r s  begin to vary.  
Let us examine the t ransient  p rocesses  in the system. 

2. The Initial System of Equations and Its Transformation.  One of the most  difficult s tages in solv- 
ing one-dimensional  nonstat ionary problems is to obtain information on the electr ic  field in the channel. 
For  Rm ~ 1, this field is determined not only by the res is tance  voltage drop but also by the e lec t romag-  
netic induction for the external  c i rcui ts  and currents  in the channel. The calculation of these effects using 
MaxwelUs equations is difficult since in a one-dimensional  approximation the e lectr ic  field does not nec- 
essa r i ly  Satisfy these equations [1, 2] and apart  f rom that they do not explicitly contain the external c i r -  
cuit pa rame te r s .  The role  of the external inductances as assumed is sufficiently large; therefore  it is more  
convenient to use Kirchhoff 's  law for the c i rcui t  of the t r ansver se  flow element of thickness Ax. We have 

zo ~ ~ (2.1) u~Bvzo = Iz ~ + R e ! +  Le ~ -  + Ot 

Here I z is the cur ren t  of the flow element, 6 is the flow thickness along theyax i s  (6<Y0), and q'i is 
the total internal flow interact ion of the element in the channel. The quantities Re, Le and the relation 

L* ----- Le (2.2) 
B e + zo / ~ax8 

describing the t ime scale of the t ransient  p rocess  are limited from below in such a way that 0~I, i / 0 t  in Eq. 
(2.1) is not significant.* The eddy fields at the ends of the channel are  not taken into account since the 
end effects are  considered to be suppressed.  

tion: 

Taking into account that Iz=jz6AX and Ux 6= const, (2.1) can be rewri t ten in the form 

ot u x ot ) (2.3) 

The other two initial conditions will be given by the equation of motion and the f i rs t  Maxwell 's equa- 

where p is the fluid density 

te rs  

0By_ (2.4) OUxat + ux ~Oux = /zB~p ~ qx, ~ -- ~t~]z 

and #0 is the permeabil i ty  of f ree  space. 

Let us fur ther  relate  x to l ,  t to l /uo,  and let us introduce the dimensionless quantities and pa rame-  

u B B:, ]z R -~- ReaxS~ 
u =  u~' =-~o ' 1= Z~oBo' ~o 

LeAx6~ qxl R m ~ ~to~Uol , S ~-- ~B~ L = - ~ H - '  q : uo ---~'  pu--'-Z 

*In a one-dimensional  approximation the res t r ic t ion  on the examined model is connected with the inequality 
for dimensionless pa rame te r s  (see below) 

t a / (g) 

0 x 

which is satisfied at sufficiently large Re, L e, and L*.  
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Here R m is the magnetic Reynolds number  and S is the magnetohydrodynamic interact ion parameter .  
Then the initial sys tem will have the form 

a~o_7. + u -~f~ = --  S]B + q, OBo_~_ ~- Rm] (2.5) 

. au ~ ,g?B q/ (2.6) of _L 17f= [ u ~ B - - ] ( u + . B ) ]  -- -~ 

Equation (2.6) follows f rom (2.3) and (2.4) after  ~hanging to dimensionless quantities.  

Let us wri te  the sys tem (2.5), (2.6) in matr ix  form:  

A~t + C~  = D (2.7) 

Here ~ is the unknown vector-funct ion with components u, j, B; A is the matr ix obtained f rom the co-  
efficients in front of the derivatives with respec t  to t; C is the matr ix  f rom the coefficients in front of the 
derivat ives with respec t  to x; D is the column vec tor  with the components formed by the r ight-hand sides 
of the equations (2.5), (2.6). The subscr ipts  denote differentiation with respec t  to t and x. 

It is easy to see that both ma t r i ces  A and C are singular.  This makes the analysis  and t r ans fo rma-  
tion of the initial sys tem difficult. Therefore  let us use new independent var iab les :  

~ ] ~ t + x ,  ~ - - - - t - - x  

for  which we obtain 

ai 2i 
O~: ~ i - -  u 

Ou i + u au i 
a-~ + l - ~, a,1 = - i - : - T  (q - -  S ] B )  

O~l ai i [ u : B - - ] ( u + R ) ] +  u ( I L u  i ( q - S i B )  

OB OB 

(2.8) 

(2.9) 

(2.10) 

For  this system,  matr ix  A is uni tary '  and matr ix  C is nonsingular.  The charac te r i s t i c  directions 
co= d~?/d~" of sys tem (2.8)-(2.10) a re  determined in the usual way [3] af ter  equating the determinant  II c-o~tll  
to zero,  where I is unit matr ix.  We have 

i~o~ = (i + u) / (I --u), o~ = I, r = --i 

Since all ~0 are real and different, the quasilinear system (2.8)-(2.10) is hyperbolic. 

For each characteristic curve it is possible to find a left three-dimensional eigenvector k which 
sat isf ies the equation 

~C --~ o ~i (i = l, 2, 3) (2.11) 

We have 

~i = ~2 = , ~ = 

Let us multiply Eqs. (2.8)-(2.10) by the components h i for each 0~i,and let us sum. Then we will ob- 

tain the characteristic normal form [3] of the system where in each equation differentiation is carried out 

only along the direction of w i with the operator 0 (')/8"r+c~i0 (')/077 o Since this operator is equivalent to 
d(-)/cb- along the corresponding characteristic, we have 

d-~----- t - - u  ( q - S j B )  along ~ l  f - -u  

d~ u d~ B L 2 

d__BB -- Rm] along /d' i l  1 -- -- i 

Using the property of invariance of the characteristic directions with respect to the transformation 
of coordinates, let us return to the previous independent variables x and t, and we shall finally obtain 

d~, , / s  = d--t- = q -- SIB along ~ dt j l  u (2. ]2) 
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d/ / du ~ ; dx 
'dt u dt = "'m ~ [ u 2 B - - ] ( u ~ - R ) l  along (TF) ----0 (2.13) 

d___BB = Rm ] along / dx t = oo (2.14) 
dx \ d t / a  

The la t t e r  c h a r a c t e r i s t i c  equation co r r e sponds  to the propagat ion of the e lec t romagne t ic  excitation 
at an infinite veloci ty .  Taking into account the re la t iv i s t i c  t e r m s ,  the slope of the c h a r a c t e r i s t i c  3 wi11 be 
de te rmined  by the veloci ty  of light [4]. 

Fur the r ,  we shall  seek  only continuous solutions for  the unknowns u, j, B, admitt ing,  however,  d i s -  
continuit ies in the i r  f i r s t  de r iva t ives  on the c h a r a c t e r i s t i c s .  The invest igat ion of discontinuous solutions 
of the s tep type,which a r e  apparent ly  poss ib le  for  l a rge  R m and S and smal l  L because  of the nonlineari ty 
of the initial sys tem,  is  a s epa ra t e  p rob lem.  

The s y s t e m  (2.12)-(2.14) can be obtained di rec t ly  f rom the bas ic  condition of inde te rminacy  of the 
der iva t ives  on the c h a r a c t e r i s t i c  cu rves  [5], Moreover ,  express ions  for  total  d i f ferent ia ls  of the unknowns, 
for  ins tance,  

Ou Ou 
du = - ~  dx-~--~ dt, e tc .  

are  added to the init ial  s y s t e m  (2.5), (2.6). 

By using CramerTs  law to solve the s y s t e m  obtained with r e spec t  to each der iva t ive  and equating the 
de te rminan ts  in the n u m e r a t o r  and denominator  to zero,  we obtain an equation for  the c h a r a c t e r i s t i c s  (roots 
of denominator) and compat ib i l i ty  conditions for  these ( roots  of numera to r )  which coincide with the sys t em 
(2.12}-(2.14). 

The cha rac t e r i s t i c  s y s t e m  (2.12)-(2.14) can be solved numer ica l ly  if the initial va lues  of u, j, and B 
on some boundary curve  in the xt plane a r e  known. This  curve  should be th ree -d imens iona l  o r  with some 
additional r e s t r i c t i o n s  of  the c h a r a c t e r i s t i c  type [3, 6] when for  any point (x, t) i t  is  poss ib le  to find the 
region which is cut off on the curve  by the ex t r eme  c h a r a c t e r i s t i c s  pass ing through the point (x, t) in the 
d i rec t ion of the d e c r e a s e  in t. In the examined p rob lem the s lopes  of all c h a r a c t e r i s t i c s  w -1 a r e  nonnega- 
t i r e ,  s ince the pe r tu rba t ions  in the flow do not propagate  ups t r eam.  

Fo r  the hydrodynamic  pe r tu rba t ions  this  is  explained by the absence  of a p r e s s u r e  gradient  in the 
flow, fo r  the cu r r en t  pe r tu rba t ions  this is  explained by the omiss ion  of 8 q ' i / 0 t  in Eq. (2.1), and for  the m a g -  
netic f ield it is explained by the se lec ted  geome t ry  of  the magnet ic  c i rcui t  and cur ren t  leads.  Actually; in 
the p resen t  model each e l e m e n t a r y  cu r ren t  j(x')  induces a se l f -magne t i c  field [2, 7] in the region x > x '  
only, s ince,  as r ega rd s  this cu r ren t ,  which s h o r t - c i r c u i t s  the cu r ren t  leads  on the right,  pa r t  of the non- 
magnet ic  gap in the region x< x '  i s  shunted by the c losed external  magnet ic  c i rcu i t  with p ~ .  Thus, the 
magnet ic  field at the input r e m a i n s  unper turbed.  

3. Init ial  Conditions. Let us fo rmula te  the initial conditions on the x and t axes*  with the following 
assumpt ions .  At the instant  t = 0 of the t r ans ien t  p roce s s ,  the cu r ren t  in the flow cannot instantaneously 
change because  of the inductances.  Consequently,  the functions u(x, 0), j(x~ 0), B(x, 0) a r e  known f r o m  the 
p reced ing  s t eady - s t a t e  flow conditions. Then the cu r ren t  at  the input is equal to ze ro  because  of the b reak  
of the external  c i rcui t ,  and thus the veloci ty  u(0, t) is de te rmined  by the hydrodynamics  in the region x < 0. 
The magnet ic  field at the input is identical ly equal to the externa l  field Be{t). Thus,  we have 

u(x, 0 ) = ( p l ( x ) ,  i (x ,  0 ) = % ( x ) ,  B(x ,  0) ---- (p3 (x) (3.1) 

u(0, t)-----0 I(t), ](0,  t)-----0 8 ( t ) - 0 ,  B(0, t)----0 8( t ) - -Be( t )  (3.2) 

For  the continuity of the solutions it is n e c e s s a r y  that matching conditions at the point (0, 0) should 
be sa t is f ied,  i .e. ,  

~ (0) ----~ (~ (0) ( i -~  i ,  2, 3) (3.3) 

In the examined case  the axes  x and t will be the cha rac t e r i s t i c s ,  and t he re fo re  we a r r i v e  at the cha r -  
ac t e r i s t i c  Cauchy p r o b l e m  (Goursat  p roblem) .  I ts  specia l  fea ture  is the fact  that the functions (Pi(x) and 
0i(t) cannot be given a r b i t r a r y  values  but should sa t i s fy  the cor responding  cha rac t e r i s t i c  equations.  Other -  

*On the t axis these conditions can be cal led boundary  eonditio'ns. 
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w i s e ,  h o w e v e r ,  t h i s  l i m i t a t i o n  i s  e x p r e s s e d  by  the r e q u i r e m e n t  tha t  
the  n u m b e r  of cond i t i ons  on the  c h a r a c t e r i s t i c  b o u n d a r y  should  be  
equa l  to  the  n u m b e r  of c h a r a c t e r i s t i c s  i n c l u d e d  in the  r e g i o n  of i n -  
f l uence  wi thout  t ak ing  into accoun t  the  b o u n d a r y  c u r v e  i t s e l f  [3]. 

4. N u m e r i c a l  C a l c u l a t i o n s  and D i s c u s s i o n s  of R e s u l t s .  The 
n u m e r i c a l  so lu t ion  fo r  the  s y s t e m  (2.12)- (2.14) was  c a r r i e d  out  f o r  
a q u a d r a t i c  n e t w o r k  in the  xt  p l ane ,  a t y p i c a l  c e l l  of which i s  shown 
in F ig .  2. F o r  the  node i,  the  r e g i o n  of d e p e n d e n c e  i s  d e t e r m i n e d  
by  the t h r e e  n e i g h b o r i n g  nodes  k,  m,  n, which  l i e  in the  d i r e c t i o n  
of d e c r e a s e  in  x and t. The c a l c u l a t i o n  was  m a d e  by  m e a n s  of s u c -  
c e s s i v e  d i s p l a c e m e n t s  f r o m  the x and t axes  :n the  r e g i o n  of  t h e i r  
i n f luence  0_<x-<t ,  0_<t<~o. The i n t e r v a l s  ik  and in  l i e  on c h a r a c -  
t e r i s t i c s  3 and 2, r e s p e c t i v e l y .  The c h a r a c t e r i s t i c  1 p a s s e d  th rough  
the po in t  i with a s l o p e  c o r r e s p o n d i n g  to the i n t e r m e d i a t e  po in t  p 
l o c a t e d  in the  r e g i o n  of the  func t ion .  Al l  p a r a m e t e r s  a t  the  po in t  
p w e r e  d e t e r m i n e d  by l i n e a r  i n t e r p o l a t i o n  of the  p a r a m e t e r s  in the  

n e i g h b o r i n g  nodes .  If  the  p a r a m e t e r s  a t  the  po in t s  k,  m,  n a r e  known, i t  i s  p o s s i b l e  to d r a w  a l l  c h a r a c t e r -  
i s t i c s  at  the  po in t  i and so lve  the  s y s t e m  (2.12)-(2.14) by  the m e t h o d  of f in i te  d i f f e r e n c e s  a long the  c h a r a c t e r -  
i s t i c  i n t e r v a l s .  

The p r o b l e m  with  the fo l lowing  i n i t i a l  da t a  was  so lved :  

u(x t 0 )=  u(0, t ) = B ( x ,  0 ) = B ( 0 ,  t ) =  t, ](z, 0 ) = ] ( 0 ,  t ) = 0  (4.1) 

It was  a s s u m e d  tha t  B0= B e = cons t .  Th i s  type  of i n i t i a l  cond i t i ons  c o r r e s p o n d s ,  fo r  e x a m p l e ,  to the 
s h o r t - c i r c u i t i n g  of the  e x t e r n a l  c i r c u i t s  wi th  a g iven  d i s t r i b u t i o n  of r e s i s t a n c e s  and i n d u c t a n c e s  at  the  i n -  
s t a n t  t = 0 o r  swi t ch ing  on at  t = 0 of a c o n s t a n t  e x t e r n a l  m a g n e t i c  f i e ld .  In the  l a t t e r  c a s e  we n e g l e c t  the  
eddy c u r r e n t s  i n d u c e d  in the  f low at  the  i n s t a n t  when the f i e ld  i s  s w i t c h e d  in, o r  a s s u m e  t h e i r  t i m e  s c a l e  
much  s m a l l e r  than  the m e a n  r a t i o  L* d e t e r m i n e d  by (2.2). T h e s e  i n i t i a l  cond i t i ons  can  a l s o  be u s e d  with 
s o m e  a p p r o x i m a t i o n  fo r  the c a s e  of input  of the  flow into the  channe l  at  the  i n s t a n t  t = 0 i f  

! / u0~L* 

It  can  e a s i l y  be  seen  tha t  the  i n i t i a l  da t a  of (4.1) s a t i s f y  the  c h a r a c t e r i s t i c  equa t ions  (2.13) and (2.14), 
which i s  the n e c e s s a r y  cond i t ion  for  the  c h a r a c t e r i s t i c  Cauchy p r o b l e m .  Equat ion  (2.14) fo r  the x ax i s  i s  
i d e n t i c a l l y  s a t i s f i e d ,  and in Eq. (2.13) fo r  the  t ax i s  we have  

/=o, d~ du ( R) 
d t  - -  d t  = 0 '  U B  [x=o = l" i + - ~ -  x = 0 = i  

R~o~ 
J~0 

The l a s t  r e l a t i o n  i s  ana logous  to K i r c h h o f f ' s  law f o r  any open s o u r c e  of e m f  (in o u r  c a s e  uB) and i s  
p h y s i c a l l y  obv ious .  
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It should be noted that the res t r ic t ion  assumed above R(0, t) -* ~ is not stringent f rom a pract ical  
point of view. In the general  case of an a rb i t r a ry  distribution of R e over  the electrodes,  the origin of co-  
ordinates can be slightly displaced ups t ream,  where there  are  no electrodes  and no current ,  and the func- 
tion R can be approximated in a one-dimensional  approximation with the required  features .  If the external 
r e s i s t ances  are  distr ibuted uniformly over  the electrodes,  a good approximation for  the calculated function 
R(x) is given, for example,by the hyperbola x - i /h ,  n >- 5. 

The calculat ions were  made by using an IBM-360 (model 91) computer  for  a network with cell dimen- 
sions 5x= S t =  10 -2, R = L = x  -1/5, q= 0 and different values of R m and S. Typical resul ts  are given in Fig. 3 
for t= 1 and also in Fig. 4 for  x= 0.19 (the var iables  are  marked by one prime) and for  x=0.79 (the var iables  
a re  marked  by two pr imes) ;  moreover ,  the continuous lines show the values Rm= S= 2, and the broken lines 
R m = S = 5. It can be seen that an increase  in the conductance (r leading to a proport ional  increase  in Rm and 
S causes  a more  dras t ic  change in the pa rame te r s  in the channel. The apparent decrease  in j in this case 
is connected with an inc rease  in the basis  ou0B 0. However, if R m and S inc rease  at the expense of l, j decreases  be-  
cause of the redis t r ibut ion ofR e and Le, which is neces sa ry  for satisfying the accepted condition R = L ~- x- 1/5. 
Moreover ,  the sca les  for  x and t also vary .  F r o m  Figs.3, 4 it follows that at the head of the channel (x = 0.19) j in- 
c r ea se s  monotonically and at the end of the channel (x = 0.79) j inc reases  with t and then decreases  be-  
cause of the considerable  dec rease  in velocity.  

The numerical  resu l t s  were  spot checked by substituting (2.5), (2.6) in the initial system. The part ial  
derivatives were located approximately f rom the inc rease  in the quantities in the interval 5x' = St' = 0.1. The 
e r r o r  in the equations did not exceed 3~0 of the maximum t e r m  right up to t= 5. 

LITERATURE CITED 

I. A.G. Kulikovskii and G. A.Lyubimov, Magnetohydrodynamics [in Russian], Fizmatgiz, Moscow (1962). 
2. J. Shercliff, Textbook of Magnetohydrodynamics, Pergamon (1965). 
3. R. Courant, Partial Differential Equations, Wiley (1962). 
4. M.R. Johnson, "Shock-Induced Flow Interactions with Transverse Magnetic Fields," Phys. Fluids, 

I0, No. 3 (1967). 
5. A.H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press (1953). 
6. A. Jeffrey and T. Taniuty, Nonlinear Wave Propagation with Applications to Physics and Magneto- 

hydrodynamics, Academic Press (1964). 
7. E.I. Yantovskii, Self-Magnetic Field in the Uniform Flow of an Electrically Conducting Fluid [in 

Russian], Magnitnaya Gidrodinamika, No. 4 (1965). 

556 


