NONSTATIONARY CONDUCTING FREE FLOW
IN A TRANSVERSE MAGNETIC FIELD

A.I. Bertinov and D. A. But

In magnetohydrodynamic flow the viscous friction at the walls can be substantial. The role
of viscous friction can be considerably reduced by using a free or a semirestricted flow of
the conducting fluid. Nonstationary phenomena in one-dimensional motion of a free plane
incompressible fluid flow in a transverse magnetic field are examined. The narrow sides
of the flow come into contact with the sectional electrodes connected through external cir-
cuits with an active-inductive load. The magnetic Reynolds number and the magnetody-
dynamic interaction parameter are assumed to be large, When the electric field due to
electromagnetic induction in the channel is much smaller than the field due to the external
circuits, the problem can be reduced to the characteristic Cauchy problem for a quasilinear
hyperbolic system of first-order equations which can be solved by the method of character-
istics using a computer.

1. Formulation of the Problem., Let us examine a free plane flow of a nonviscous incompressible
conducting fluid moving in a transverse magnetic field B (0, By, 0) at a velocity u (ug, 0, 0) and with the
narrow sides in contact with the electrodes in the planes z= :!:1/220; in Fig. 1, the free flow is shown by
the broken lines between the electrodes. The electrodes are sectioned along the x axis,and each electrode
pair is connected to an independent external circuit placed on the downstream side and consisting of an
ohmic resistance Re and an inductance Le. In the region y > /5y, v < =Yy, there is an ideal magnetic cir-
cuit (4 =«) closed between the planes x=0 and x=[. The flow moves in the narrow gap y, between the ferro-
magnetic walls without touching them. If the external circuits are closed, an electric current with a density
j(0, 0, j) appears in the stream and magnetohydrodynamic interaction takes place.

It is assumed that at the input of the channel the flow has longitudinal nonconducting walls and at the
output of the channel, for instance, the flow begins to break up so that the edge effects can be neglected. The
distribution of the external resistances and inductances and also the external magnetic field Bg are con-
sidered as independent smooth functions at x> 0, t> 0: Re=Re(x, 1), Le=L,(x), Bg=Bglt), Re(0, t) — = (at
the input the electrodes are open).
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The functions Re and Lg are such that the electric field produced by the external circuits is much
larger than the field produced by the change in the internal flow interaction in the channel for the circuit
of each electrode pair. The gravitational and bulk dynamic forces act only along the x axis and are char-
acterized by the acceleration qx(t). The significance of these restrictions will be obvious from the follow-
ing. The functions Re(x, t), Le(x), Be(t) are given and are the controlling parameters for the system. If
necessary, the conductivity of the fluid o as a function of x and t can be included. However, in this case,
o=const, The magnetic Reynolds number Ry, and the parameter of the magnetohydrodynamic interaction
for the flow are assumed to be considerable.

For t<0 let the flow be steady, and at the instant t=0 let the controlling parameters begin to vary.
Let us examine the transient processes in the system.

2. The Initial System of Equations and Its Transformation. One of the most difficult stages in solv-
ing one-dimensional nonstationary problems is to obtain information on the electric field in the channel.
For Ry S 1, this field is determined not only by the resistance voltage drop but also by the electromag-
netic induction for the external circuits and currents in the channel. The calculation of these effects using
Maxwell's equations is difficult since in a one-dimensional approximation the electric field does not nec~
essarily satisfy these equations [1, 2] and apart from that they do not explicitly contain the external cir-
cuit parameters., The role of the external inductances as assumed is sufficiently large; therefore it is more
convenient to use Kirchhoff's law for the circuit of the transverse flow element of thickness Ax. We have
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Here I is the current of the flow element, 6 is the flow thickness along they axis (6<y(), and ¥; is
the total internal flow interaction of the element in the channel. The quantities Re, Lg and the relation
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describing the time scale of the transient process are limited from below in such a way that ¥ ;/8t in Eq.
(2.1) is not significant.* The eddy fields at the ends of the channel are not taken into account since the
end effects are considered to be suppressed.

Taking into account that I, =j,0Ax and ux6=-const, (2.1) can be rewritten in the form
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The other two initial conditions will be given by the equation of motion and the first Maxwell's equa-
tion:
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where p is the fluid density and u, is the permeability of free space.

Let us further relate x to I, t to [ /u,, and let us introduce the dimensionless quantities and parame-

ters
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*In a one~dimensional approkimation the restriction on the examined model is connected with the inequality

for dimensionless parameters (see below)
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which is satisfied at sufficiently large Rg, Lg, and L*,
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Here R, i8 the magnetic Reynolds number and S is the magnetohydrodynamic interaction parameter.
Then the initial system will have the form

du @ , 4B ,
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Equation (2.6) follows from (2.3) and (2.4) afterichanging todimensionless quantities.
Let us write the system (2.5}, (2.6} in matrix form:
A+ CEe=D 2.7)

Here £ is the unknown vector-function with components u, j, B; A is the matrix obtained from the co-
efficients in front of the derivatives with respect to t; C is the matrix from the coefficients in front of the
derivatives with respect to x; D is the column vector with the components formed by the right-hand sides
of the equations (2.5), (2.6). The subscripts denote differentiation with respect to t and x.

It is easy to see that both matrices A and C are singular, This makes the analysis and transforma-~
tion of the initial system difficult. Therefore let us use new independent variables:

n=1t-4z, T=1l—=

for which we obtain
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For this system, matrix A is unitary! and matrix C is nonsingular. The characteristic directions
w=dn/dr of system (2.8)~(2.10) are determined in the usual way [3] after equating the determinant || C—~wI]]
to zero, where I is unit matrix. We have

((01——"‘—(1 + u)/(i — u’)y (1)2:-1, (})3 =-~1
Since all ware real and different, the quasilinear system (2.8)-(2.10) is hyperbolic.

For each characteristic curve it is possible to find a left three~dimensional eigenvector A which
satisfies the equation

?\,;C = coi?\.,; (i = 1, 2, 3) 2. 11}
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Let us multiply Egs. (2.8)~(2.10) by the components A; for each wj,and let us sum. Then we will ob~
tain the characteristic normal form [3] of the system where in each equation differentiation is carried out
only along the direction of w; with the operator 8 (")/8r+w;d (}/8n . Since this operator is equivalent to
d(-)/dr along the corresponding characteristic, we have

We have

du 1 . dn {1 +u
= = T1=5 (4 — SiB) along (_élr—)l: o~
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Using the property of invariance of the characteristic directions with respect to the transformation
of coordinates, let us return to the previous independent variables x and t,and we shall finally obtain

du . [ dz
ar = q-— S]B along ‘\Tit—>1 = (2.12)
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The latter characteristic equation corresponds to the propagation of the electromagnetic excitation
at an infinite velocity. Taking into account the relativistic terms, the slope of the characteristic 3 will be
determined by the velocity of light [4].

, Further, we shall seek only continuous solutions for the unknowns u, j, B, admitting, however, dis-
continuities in their first derivatives on the characteristics. The investigation of discontinuous solutions
of the step type,which are apparently possible for large Ry, and S and small L because of the nonlinearity
of the initial system,is a separate problem.

The system (2.12)~(2.14) can be obtained directly from the basic condition of indeterminacy of the
derivatives on the characteristic curves [5]. Moreover, expressions for total differentials of the unknowns,
for instance,

du Ju
du == "%dx—}—"é't' dt, ete,

are added to the initial system (2,5), (2.6).

By using Cramer's law to solve the system obtained with respect to each derivative and equating the
determinants in the numerator and denominator to zero, we obtain an equation for the characteristics (roots
of denominator) and compatibility conditions for these'(roots of numerator) which coincide with the system
(2.12)-(2.14}).

The characteristic system (2.12)~(2.14) can be solved numerically if the initial values of u, j, and B
on some boundary curve in the xt plane are known. This curve should be three-dimensional or with some
additional restrictions of the characteristic type [3, 6] when for any point (x, t) it is possible to find the
region which is cut off on the curve by the extreme characteristics passing through the point (x, t) in the
direction of the decrease int. In the examined problem the slopes of all characteristics w™! are nonnega-
tive, since the perturbations in the flow do not propagate upstream.

For the hydrodynamic perturbations this is explained by the absence of a pressure gradient in the
flow, for the current perturbations this is explained by the omission of 8%;/8t in Eq. (2.1), and for the mag~
netic field it is explained by the selected geometry of the magnetic circuit and current leads. Actually, in
the present model each elementary current j(x') induces a self~magnetic field [2, 7] in the region x> X'
only, since, as regards this current, which short-circuits the current leads on the right, part of the non-
magnetic gap in the region x <x'is shunted by the closed external magnetic circuit with y -, Thus, the
magnetic field at the input remains unperturbed.

3. Initial Conditions. Let us formulate the initial conditions on the x and t axes* with the following
assumptions. At the instant t=0 of the transient process, the current in the flow cannot instantaneously
change because of the inductances. Consequently, the functions u(x, 0), j{x, 0}, B(x, 0) are known from the
preceding steady-state flow conditions. Then the current at the input is equal to zero because of the break
of the external circuit, and thus the velocity u(0, t) is determined by the hydrodynamics in the region x <0.
The magnetic field at the input is identically equal to the external field Bg(t). Thus, we have

w(@ 0) =9, (), 7 0)=g.@) B 0)=q;@) 3.1)
w0, £)=06,(2),j (0, )y ="0,(t) =0, B(0, t)="8;(t) =B, () (3.2)

For the continuity of the solutions it is necessary that matching conditions at the point (0, 0) should
be satisfied, i.e.,

9 (0)=6; (0) (i=1, 2, 3) (3.3)

In the examined case the axes x and t will be the characteristics, and therefore we arrive at the char-
acteristic Cauchy problem (Goursat problem). Its special feature is the fact that the functions ¢;(x) and
9 (t) cannot be given arbitrary values but should satisfy the corresponding characteristic equations. Other-

*On the t axis these conditions can be called boundary conditidns.
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wise, however, this limitation is expressed by the requirement that
8" S S I the number of conditions on the characteristic boundary should be

P — equal to the number of characteristics included in the region of in-
L fluence without taking into account the boundary curve itself [3].
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4. Numerical Calculations and Discussions of Resultg, The

—— | 2" ] numerical solution for the system (2.12)-(2.14) was carried out for

\\\\ - i R SR a quadratic network in the xt plane, a typical cell of which is shown

N in Fig. 2, For the node i, the region of dependence is determined

™ by the three neighboring nodes k, m, n, which lie in the direction

4 ~ of decrease in x and t. The calculation was made by means of suc-
ST cessive displacements from the x and t axes n the region of their

. et

e N 7, o~ influence 0 =x=t, 0 =t<w, The intervals ik and in lie on charac~
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oS S teristics 3 and 2, respectively. The characteristic 1 passed through
28 r4 4 ¢ the point i with a slope corresponding to the intermediate point p
Fig. 4 located in the region of the function. All parameters at the point
p were determined by linear interpolation of the parameters in the
neighboring nodes. If the parameters atthepoints k, m, n are known, it is possible to draw all character-
istics at the point i and solve the system (2,12)-(2.14) by the method of finite differences along the character-
istic intervals.

The problem with the following initial data was solved:

ulry O) = u(@, =B (z, O)=BO, H=1, j(z, =70, =0 “4.1)

It was assumed that By=Bg=const. This type of initial conditions corresponds, for example, to the
short-circuiting of the external circuits with a given distribution of resistances and inductances at the in-
stant t=0 or switching on at t=0 of a constant external magnetic field. In the latter case we neglect the
eddy currents induced in the flow at the instant when the field is switched in, or assume their time scale
much smaller than the mean ratio L* determined by (2.2). These initial conditions can also be used with
some approximation for the case of input of the flow into the channel at the instant t=90 if

1/ ug<€ L¥*
It can easily be seen that the initial data of (4.1) satisfy the characteristic equations (2.13) and (2.14),

which is the necessary condition for the characteristic Cauchy problem. Equation (2.14) for the x axis is
identically satisfied, and in Eq. (2.13) for the t axis we have

: dj _ du , R
i=0 gr=gr=0 ubl,—i(t+i)| =1
R —=+c
i->0

The last relation is analogous to Kirchhoff's law for any open source of emf (in our case uB) and is
physically obvious. '
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It should be noted that the restriction assumed above R(0, t) — < is not stringent from a practical
point of view. In the general case of an arbitrary distribution of R, over the electrodes, the origin of co-
ordinates can be slightly displaced upstream, where there are no electrodes and no current, and the func-
tion R can be approximated in a one~dimensional approximation with the required features. If the external
resistances are distributed uniformly over the electrodes, a good approximation for the calculated function
R(x) is given, for examplesby the hyperbola Y p>s,

The calculations were made by using an IBM~360 (model 91) computer for a network with cell dimen~
sions 6x=0t=10"%, R=L=x"1/5 q=0 and different values of Ry and S. Typical results are given in Fig. 3
for t=1 and also in Fig, 4 for x= 0.19 (the variables are marked by one prime) and for x=0.79 (the variables
are marked by two primes); moreover, the continuous lines show the values Ry, =S=2, and the broken lines
Ry, =S8=5. It can be seen that an increase in the conductance ¢ leading to a proportional inerease in Ry and
S causes a more drastic change in the parameters in the chanmel. The apparent decrease in j in this case
is connected with anincrease in the basis ou;By. However, if Ry, and Sincrease at the expense of [, j decreases be-~
cause of the redistribution of Rg and L, which is necessary for satisfying the accepted condition R= L=x" 175,
Moreover, thescales for x and talsovary. From Figs.3, 4 it follows that at the head of the channel (x=0.19) jin-
creases monotonically and at the end of the channel (x=0.79) jincreases with t and then decreases be-
cause of the considerable decrease in velocity.

The numerical results were spot checked by substituting (2.5), (2.6) in the initial system. The partial
derivatives were located approximately from the increase in the quantities in the interval 0x'=dt'=0.1. The
error in the equations did not exceed 3% of the maximum term right up to t=5.
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